翻訳と辞書 |
Index set (recursion theory) : ウィキペディア英語版 | Index set (recursion theory) In the field of recursion theory, index sets describe classes of partial recursive functions, specifically they give all indices of functions in that class according to a fixed enumeration of partial recursive functions (a Gödel numbering). ==Definition== Fix an enumeration of all partial recursive functions, or equivalently of recursively enumerable sets whereby the ''e''th such set is and the ''e''th such function (whose domain is ) is . Let be a class of partial recursive functions. If then is the index set of . In general is an index set if for every with (i.e. they index the same function), we have . Intuitively, these are the sets of natural numbers that we describe only with reference to the functions they index.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Index set (recursion theory)」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|